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Application of moving adaptive grids for numerical solution
of 2D nonstationary problems in gas dynamics
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SUMMARY

Solution-adaptive grid generation procedure is coupled with the Godunov-type solver of the second-
order accuracy. Dynamically adaptive grids, clustered to singularities, allow to increase the accuracy of
numerical solution. The theory of harmonic maps is used as a theoretical framework for grid generation.
The problem of constructing harmonic coordinates on the surface of the graph of control function is
formulated. The projection of these coordinates onto a physical domain produces an adaptive-harmonic
structured grid. A variational grid generator which can be used also in the case of unstructured grids
with adaptation to a vector-function is described in detail. The discrete functional has an in�nite barrier
on the boundary of the set of grids with all convex cells and this guarantees unfolded grid generation
at every time step. Results of test computations are presented. Copyright ? 2002 John Wiley & Sons,
Ltd.

KEY WORDS: gas dynamics; supersonic �ow; high-order scheme; adaptive grid; harmonic mapping;
unfolded grid

1. INTRODUCTION

The main purpose of the present work is to investigate the possibility of applying the method
of adaptive-harmonic grid generation, which has shown essential advantages in the stationary
problems [1–3], to the nonstationary problems of gas dynamics.
It is well known that grid adaptation to singularities of the numerical solution allows to

increase greatly the accuracy of computations [4]. However, there are some additional numer-
ical problems here. It is necessary to obtain a correct resolution of singularities and suppress
nonphysical spurious oscillations. In the present paper the method of adaptive grid genera-
tion, based on the theory of harmonic maps, ensuring generation of unfolded grids at every
time step is presented. The method is variational, i.e. we consider the problem of minimizing
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a �nite-di�erence function approximating the Dirichlet’s functional written for surfaces. The
discrete functional has an in�nite barrier on the boundary of the set of grids with all convex
cells and this guarantees unfolded grid generation during computations. This folding-resistant
property is very important in nonstationary problems since if any of the cells become folded
we have to stop the calculation and use special procedures to continue modeling.
Although in the paper we present results obtained on structured grids, the method can be

extended to unstructured grids as well.
Moving grid techniques have been developed in a number of works [5–9]. All these meth-

ods, in contrast to those presented in this paper, do not ensure the generated grids to be
unfolded at discrete level.
To execute calculations on the moving curvilinear grids a Godunov Linear Fluxes Correction

(GLFC) scheme is used, being a modi�cation of the Godunov scheme with �uxes correction
and time splitting, that provides the second-order accuracy in time and space to the smooth
solutions [10]. In order to suppress nonphysical spurious oscillations in the vicinity of the
discontinuities a monotonicity algorithm is applied.

2. FLOW SOLVER

In this section we shall brie�y describe the GLFC scheme used as a �ow solver [10].
We write the variational formulation for the hyperbolic system of gas dynamics equations

in integral form of conservation laws∫∫
A

© � dx dy + a dy dt + b dt dx= 0 (1)
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here u and v are the velocity components, p and � are the pressure and density. Total
energy E=�[e + 0:5(u2 + v2)], here e is the speci�c internal energy. Equation of state is
p=(�− 1)�e, where � is the ratio of speci�c heats. Denote the vector of unknown functions
as f =(u; v; p; �)T .
Let us introduce the curvilinear moving grid in space x − y − t (see Figure 1(a)). Bottom

face of the computing cell (or control volume) is taken at time level n and the top face at
level n+ 1.
Integrating in Equation (1) over the oriented surface being the boundary of the control

volume we obtain a cell-centered �nite-volume discretization of the governing equations

�n+1An+1 − �nAn +Q11′4′4 +Q233′2′ +Q122′1′ +Q433′4′ = 0 (2)

where �n+1 and �n are the average values at time t n+1 and t n in the center of the top
and bottom faces, An+1 and An are the areas of these faces. Each of four vector values
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APPLICATION OF MOVING ADAPTIVE GRIDS 3

Figure 1. Computational cell.

Q11′4′4, Q233′2′ , Q122′1′ and Q433′4′ is an average �ux of mass, impulse and energy through
the corresponding intercell surface towards the outward normal vector.
For example, to the face 122′1′ the value Q122′1′ has the following structure

Q122′1′ =�122′1′A
xy
122′1′ + a122′1′A

yt
122′1′ + b122′1′A

tx
122′1′ (3)

where Axy122′1′ , A
yt
122′1′ , A

tx
122′1′ are the areas of projections of the face 122

′1′ onto the coordinate
planes x−y, y− t and t− x, respectively. In Equation (3) all values are de�ned in the center
of the face 122′1′ using the post-wave values after solving the Riemann problem. Pre-wave
values f in the center of the face are obtained by time splitting and a special interpolation
procedure that provides the scheme with the second-order accuracy in time and space in the
domains of smooth solution.
In every cell the admissible time step �ti+1=2; j+1=2 is de�ned by [11]

�t′i+1=2; j+1=2 =
h′i+1=2; j+1=2

max(D II
i; j+1=2 −Wi; j+1=2;−DI

i+1; j+1=2 −Wi+1; j+1=2)

�t′′i+1=2; j+1=2 =
h′′i+1=2; j+1=2

max(D II
i+1=2; j −Wi+1=2; j ;−DI

i+1=2; j+1 −Wi+1=2; j+1)

h′i+1=2; j+1=2 =
A1234√

(xi+1; j+1=2 − xi; j+1=2)2 + (yi+1; j+1=2 − yi; j+1=2)2

h′′i+1=2; j+1=2 =
A1234√

(xi+1=2; j+1 − xi+1=2; j)2 + (yi+1=2; j+1 − yi+1=2; j)2

�ti+1=2; j+1=2 =
�t′i+1=2; j+1=2 �t

′′
i+1=2; j+1=2

�t′i+1=2; j+1=2 + �t
′′
i+1=2; j+1=2

(4)
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Here �t′ and �t′′ are the admissible time steps to 1-D schemes, h′; h′′ are the ‘average heights’
of the bottom face A1234, W is the velocity of the corresponding cell edge (e.g. Wi+1=2; j is the
velocity of the edge 12 which de�nes inclination of the face 122′1′), see Figure 1(a). Next,
for example, D II

i; j+1=2 is the ‘extreme right wave’ speed in the � direction de�ned from solving
the Riemann problem to the face 11′4′4, and DI

i+1; j+1=2 is the ‘extreme left wave’ speed in
the � direction to the face 233′2′. By analogy we get D II

i+1=2; j and D
I
i+1=2; j+1, the wave speeds

in the � direction.
As an admissible time step we take the minimal �ti+1=2; j+1=2 of all cells of the grid

�t= cc�min
i; j
�ti+1=2; j+1=2 (5)

The coe�cient cc� is less than 1 (usually close to 1) and it is introduced as a correction
to the nonlinearity of the problem. Note that the time step depends on both the post-wave
values and velocity of every intercell face. In computations the value of �t, obtained at the
preceding time step, is used to the next time step. For this reason in the case of essentially
nonstationary processes the coe�cient should be greatly decreased.

3. UNFOLDED GRIDS

Two types of grids are used in computations: structured and unstructured. In structured grids
the subsequent connections between points are de�ned automatically from the indexing. A
typical example is a curvilinear grid constructed by a mapping of a parametric square onto
a physical domain. Grid nodes are enumerated with double indices in the two-dimensional
case. This is not the case of unstructured grids. For such a grid, neighbors of nodes must be
speci�ed.
The condition of the Jacobian positiveness of a mapping is used to derive conditions for

a structured grid to be unfolded [2; 3]. An unstructured grid can be assumed as a set of
local coordinates, so the condition of the Jacobian positiveness can be used also to derive
conditions for an unstructured grid to be unfolded.
In the employment of unstructured grids we must de�ne the correspondence between local

(for each element) and global node enumeration. In Figure 2 the simplest example of an
unstructured grid of four cells is shown. Element numbers are shown in circles. The local
enumeration is shown only for the element 1. The global enumeration is shown with a bold
font.
The correspondence between local and global node numbers is introduced as follows

n= n(N; k); n=1; : : : ; Nn; N =1; : : : ; Ne; k=1; 2; 3; 4;

where n is the global node number, Nn is the total number of grid nodes, N is an element
number, Ne is the number of elements, k is a local node number in the element. This corre-
spondence is implemented in the computer program as a function for a structured grid and as
an array for an unstructured grid. For example, for the unstructured grid shown in Figure 2
the correspondence between local and global enumeration is de�ned as follows

n(1; 1)=1; n(1; 2)=3; n(1; 3)=4; n(1; 4)=2

For structured grids this correspondence is de�ned by simple formulae [2].
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APPLICATION OF MOVING ADAPTIVE GRIDS 5

Figure 2. Correspondence of node numbers for a mapping of the unit square in the plane �; � onto the
quadrilateral cell 1 of an unstructured mesh in the plane x; y.

Now we consider conditions for the grid node coordinates to assure a grid to be nonde-
generate. Note, that in case of a structured grid instead of the mapping x(�; �), y(�; �) of the
parametric rectangle onto a domain �, a bilinear mapping of the same unit square onto each
quadrilateral cell can be considered (see Reference [2]). All argumentation will be true in this
case, since the Jacobian of the mapping xh(�; �), yh(�; �) is not changed if the square cell is
shifted in the plane �, �. Hence, for each cell of unstructured grid a bilinear mapping of the
unit square in the plane �, � onto this cell can be introduced (see Figure 2). The condition
of the Jacobian positiveness can be written as follows

[Jk]N¿0; k=1; 2; 3; 4; N =1; : : : ; Ne (6)

where Jk =(xk−1 − xk) (yk+1 − yk) − (yk−1 − yk) (xk+1 − xk) is the doubled area of the trian-
gle, written in local enumeration, index k is cyclic. Consequently, all grid cells with node
coordinates, satisfying inequalities Jk¿0, k=1; 2; 3; 4 will be convex quadrilaterals.
Grids, satisfying inequalities (Equation (6)) will be called convex or unfolded grids and

denoted by D. This set is a subset of the Euclidean space RNin , where Nin is the total number
of degrees of freedom of the grid equal to double the number of its internal nodes. In this
space D is an open bounded set. Its boundary @D is the set of grids for which at least one
of the inequalities (Equation (6)) becomes an equality.

4. PROBLEM FORMULATION FOR GRID GENERATION

To generate a structured adaptive-harmonic grid we formulate the problem of minimizing the
harmonic (Dirichlet’s) functional, written for a surface [1; 2]. Notations are shown in Figure 3.
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6 S. A. IVANENKO AND B. N. AZARENOK

Figure 3. Harmonic coordinates on the surface of the graph of a function z=f(x; y).

Let us consider the functional de�ning the adaptive-harmonic grid, clustered in regions of
high gradients of the function f(x; y)

I =
∫ ∫ ((1 + f2x )(x

2
� + x

2
�) + 2fxfy(x�y� + x�y�) + (1 + f

2
y )(y

2
� + y

2
� )

(x�y� − x�y�)
√
1 + f2x + f2y

d� d� (7)

The problem of unstructured grid adaptation (r-re�nement) is formulated as follows. Let the
coordinates of the unstructured grid nodes be given. The grid is formed by quadrilateral
elements only. The problem is to �nd new coordinates of the grid nodes minimizing the
functional (Equation (7)) values computed for a mapping of the unit square onto every grid
cell. In nonstationary problems such a formulation is considered at every time step and grid
adaptation is performed to the control function considered as a function f(x; y) at this time
level.
The functional (Equation (7)) can be minimized both with given �xed location of the

boundary nodes and when they move along the boundary. In the latter case new positions of
the boundary points are obtained from the one-dimensional analog of the functional (Equation
(7)), written for the boundary curve [12].
In order to control the number of grid nodes in the layer of high gradients, earlier it

has been suggested to use the function caf(x; y) instead of f(x; y) [1; 2]. Here the function
f(x; y) is scaled so that the di�erence between maximal and minimal values of it is equal to
the length of the diagonal of a rectangle enclosing all the boundary points that describe the
geometry in the plane x, y, i.e.

fmax − fmin =
√
(xmax − xmin)2 + (ymax − ymin)2

The larger the coe�cient of adaptation ca the greater the number of grid nodes in the layer
of high gradients. Usually ca is in the range from 0.1 to 0.5. In the case of elliptic problems
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APPLICATION OF MOVING ADAPTIVE GRIDS 7

the number of points in the layer is proportional to ca=(ca+1), i.e. if ca=0:5 then about one
third of the points is located in the layer of high gradients.
Note that if the algorithm of adaptive-harmonic grid generation is applied to the elliptic

problems, it is assumed the function f(x; y) to be continuously di�erentiable. If we solve the
hyperbolic systems of gas dynamics, the function f(x; y) can be discontinuous and in this
case the coe�cient ca changes its essence. Numerical experiments show that in the case of
adaptation to a smooth function, when increasing the coe�cient ca the grid begins ‘to feel’
new subdomains where the gradient is rather essential. Moreover, in Reference [1] it was
shown that in the case of continuously di�erentiable function of one variable f(x) in the
limit of ca→∞ we obtain a grid being optimal in norm L∞ in a sense that the error of
piecewise constant interpolation on such a grid in the norm L∞ will be minimal. In fact, in
1-D case the functional (Equation (7)), in which the function f(x) is changed to caf(x) and
f is scaled to be in the range 06f(x)61, x; �∈ [0; 1], takes the form

I =
∫

1
x�
√
1 + c2af2x

d�

and the Euler equation to this functional, de�ning behavior of the Jacobian of the adaptive-
harmonic grid at the continuous limit, may be written as

x�=const(1=c2a + f
2
x )

−1=2

It can be shown [1] if the grid is optimal in the norm L∞ for piecewise constant interpolation,
at the continuous limit the following expression for the Jacobian holds

x�=const |fx|−1

Hence, the adaptive-harmonic grid is optimal in the norm L∞ at the limit ca→∞.
From the above expressions for x� it follows that if the function f is discontinuous, then,

independently of the value ca¿0 at adaptation, the cell size might approach zero in the
vicinity of the discontinuity. Thus, it is necessary to modify the discontinuous function f in
such a way that, �rstly, to get a smooth function and, secondly, the regions of high gradients
of the modi�ed function would correspond to the discontinuities of the function f.
It can be achieved if, for example, to introduce an arti�cial viscosity or change problem

formulation, i.e. instead of the Euler equations consider the Navier–Stokes equations. Here we
use another approach based on introducing an additional parameter restricting the maximal
value of the control function gradient. In such an approach the number of grid points in
the vicinity of the shock should be limited and does not depend on ca. Now ca plays the
following role: when increasing the coe�cient ca the grid begins ‘to feel’ the discontinuities of
less intensity. Decrease of ca results in decreasing sensitivity of the grid to the discontinuities
of greater intensity and in the limit of ca=0 we obtain a quasiuniform harmonic grid not
depending on f(x; y).
Thus, the coe�cient ca is only responsible for selecting those discontinuities of the function

f(x; y) to which the grid will be adapted. Therefore, it is necessary to have one more con-
trolling parameter determining the width of the layer of high gradients that approximates the
discontinuity line in the solution and simultaneously restricts maximum gradient of the con-
trol function. It is accomplished as follows. First, on the existing grid we de�ne the function
f̃= cafh, where fh is an interpolant of the function f whose value in the nodes coincides
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8 S. A. IVANENKO AND B. N. AZARENOK

with the value of the function f. When solving the gas dynamics problem, the function f is
de�ned in the center of cells, therefore, we shall update the values of f to the nodes. We
apply the simplest interpolation formulae using the area of cells surrounding a given node.
Then we specify Dmax, maximal value of modulus of gradient to the control function f, for

example, as Dmax = �max(|∇f̃|), where the coe�cient �¡1 and |∇f̃|=
√
f̃2x + f̃2y . Next the

gradient of the function is updated as follows

∇f̃∗=

{
Dmax∇f̃=|∇f̃| if |∇f̃|¿Dmax
∇f̃ otherwise

Then obtained values f̃∗
x and f̃∗

y are substituted into Equation (7) instead of fx and fy.
It is not necessary to use this procedure in simulation of smooth subsonic �ows, however,

in the case of supersonic �ows we shall apply it to prevent cells to be folded in the vicinity
of the shock waves and tangential discontinuities.
If it is necessary to generate the grid with adaptation to the vector-function with components

fi(x; y), the functional Equation (7) can be generalized as

I =
∫ ∫ g11(x2� + x

2
�) + 2g12(x�y� + x�y�) + g22(y

2
� + y

2
� )

(x�y� − x�y�)
√
g11g22 − g212

d� d�

where

g11 = 1 +
∑
i
c2i (fi)

2
x ; g12 =

∑
i
c2i (fi)x(fi)y; g22 = 1 +

∑
i
c2i (fi)

2
y

The geometrical meaning of the problem of minimizing the above functional is the following.
It is equivalent to the problem of constructing harmonic coordinates on the surface of the graph
of the control vector-function with components r(x; y)= (c1f1; c2f2; : : :)(x; y) (see Reference
[13]). The harmonic coordinates are de�ned using a harmonic mapping of the surface onto
the parametric square, see Figure 3. As a result we obtain a parametrization of the surface
(x; y; c1f1; c2f2; : : :) (�; �). In case of an unstructured grid we consider the harmonic mapping
of every cell on the surface of the vector-function onto the same square cell.
In such an approach the functions fi(x; y) can be both the gas dynamics values u; v; p; �

and some function depending on them, for example, |V |=√
u2 + v2. Derivatives of those

functions are normalized as above using the corresponding maximal modulus of the gradients
Di;max.

5. MINIMIZATION OF THE FUNCTIONAL

The functional can be approximated in such a way that its minimum is attained on a grid of
convex quadrilaterals:

I h=
Ne∑
N=1

4∑
k=1

1
4
[Fk]N (11)
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where

Fk =
D1[1 + (fx)2k ] +D2[1 + (fy)

2
k ] + 2D3(fx)k(fy)k

Jk[1 + (fx)2k + (fy)
2
k ]1=2

D1 = (xk−1 − xk)2 + (xk+1 − xk)2; D2 = (yk−1 − yk)2 + (yk+1 − yk)2

D3 = (xk−1 − xk)(yk−1 − yk) + (xk+1 − xk)(yk+1 − yk)
Jk = (xk−1 − xk)(yk+1 − yk)− (xk+1 − xk)(yk−1 − yk)

Here (fx)k and (fy)k are the values of derivatives at node number k of cell number N .
The function I h possesses the following very important property (see Reference [2]).

The function I h has an in�nite barrier on the boundary of the set of unfolded
grids; i:e: if at least one of the quantities Jk in Equation (6) tends to zero for
some cell while remaining positive; then I h → +∞:

From this it follows that if the set of unfolded grids D is not empty, the system of algebraic
equations

Rx=
@Ih

@xn
=0; Ry=

@Ih

@yn
=0

has at least one solution which is an unfolded grid. To �nd it, one must �rst �nd a certain
initial unfolded grid, and then use some method of unconstrained minimization of the function
I h. Since this function has an in�nite barrier on the boundary of the set D, each step of the
method can be chosen so that the grid always remains unfolded (see Reference [12]).
Suppose the grid at the lth step of iterations is determined. We use the quasi-Newtonian

procedure when the (l+ 1)-th step is accomplished as follows

xl+1n = xln − �
(
Rx
@Ry
@yn

− Ry @Rx@yn

)(
@Rx
@xn

@Ry
@yn

− @Ry
@xn

@Rx
@yn

)−1

yl+1n = yln − �
(
Ry
@Rx
@xn

− Rx @Ry@xn

)(
@Rx
@xn

@Ry
@yn

− @Ry
@xn

@Rx
@yn

)−1
(12)

where � is the iteration parameter, which can be chosen so that the grid remains unfolded.
For this purpose after every step condition (Equation (6)) are checked and if they are not
satis�ed, this parameter is multiplied by 0.5. Then conditions (Equation (6)) are checked for
the grid, computed with a new value of � and if they are not satis�ed, this parameter is
multiplied by 0.25 and so on.
As a result the variational method of adaptive-harmonic grid generation has an immanent

guarantee to produce grids free of folding at every time step. Computational formulae are
described in detail in Reference [2].
Values of derivatives, multiplied by ca, are recalculated in such a way, that maximum

of gradient modulus does not exceed Dmax as described in Section 4. Obtained values of
derivatives are substituted into computational formulae.
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In the case of adaptation to the vector-function we replace [1 + (fx)2k ] by g11, [(fx)k(fy)k]

by g12, [1 + (fy)2k ] by g22,
√
1 + (fx)2k + (fy)

2
k by

√
g11g22 − g212. Here g11, g12 and g22 are

computed by using the formulae from Section 4.

6. DYNAMIC SOLUTION-ADAPTIVE COUPLED ALGORITHM

The process of grid generation usually contains preliminary and two main stages. At the
preliminary stage coordinates of the boundary points are obtained. At the �rst stage coordinates
of the boundary points are used to compute coordinates of internal nodes. This is an initial
grid generation step. Here we use folding-free harmonic grid generation algorithm, ensuring
all grid cells to be convex quadrilaterals [2; 12].
At the second stage we perform simulation of the physical process on the grid which can

be adjusted to the singularities of the numerical solution with the purpose of increasing the
accuracy of computations. Further it is possible to return to the preliminary or �rst stage if
some corrections of the boundary or initial grid are required.
Note the process of grid generation is multi-component and, therefore, di�erent algorithms

can be applied at di�erent stages.
One time step to solve the 2D equations of gas dynamics with grid adaptation contains the

following stages:

(1) Generate the grid at the next time step. As an initial guess we can either use the grid
from the previous time level or, what is the most e�ective, de�ne the node coordinates
by their velocity from the previous time level. Value of time step �t, de�ned in
Equation (4), is calculated at the previous step from the stability condition.

(2) Compute the gas dynamics values at the next time level using the �ow solver described
in Section 2.

(3) Update the control function (or vector-function) from the cells centers to nodes. The
result is a control function value fij at every grid node.

(4) Evaluate the derivatives (fx)ij and (fy)ij at every grid node.
(5) Make one iteration step and compute the new values of xij and yij by formulae (12).
(6) Repeat starting with step (2) to convergence.
(7) Compute the gas dynamics values at the next time level using the �ow solver.

To accelerate the adaptation procedure the following algorithm can be applied. At every
time step the �rst main iteration is performed for the entire grid. Next iterations are executed
only for those grid nodes which displaced at the main iteration more than 0.1 of maximal
value. Solution of the gas dynamics problem is executed for corresponding cells. It allows to
decrease the run time about three times.

7. FLOW IN CHANNEL

The method presented here was applied to the well known test of the planar nonstationary
supersonic �ow in the wind tunnel containing a step [14; 15]. To estimate the accuracy of
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APPLICATION OF MOVING ADAPTIVE GRIDS 11

numerical solution we use velocity components, pressure and density contours, positions of
shocks and their intensity.
The wind tunnel is one unit wide and three units length, step is 0.2 units height and begins

at x=0:6, see Figure 4. Initial conditions are f =(3; 0; 1; 1:4)T that corresponds to the �ow-in
boundary condition at x=0 as well. Ratio of speci�c heats �=1:4. The exit boundary has the
transmissive conditions since at x=3 the �ow is supersonic. Along the walls of the tunnel
re�ecting boundary conditions are applied.
The process is nonstationary, a steady �ow develops only by time 12. However, after time

4 the structure of the �ow changes weakly and we shall consider the time evolution up to
t=4. The corner of the step is the center of a rarefaction fan and, hence, is a singular point
of the �ow. Just above the step there is a thin ‘boundary layer’. Shock wave interacts with
this layer and qualitative nature of the �ow near the step is altered. When computing on the
rectangular grid we apply the additional boundary condition to the density and velocity near
the corner of the step [14] to minimize numerical errors generated by the corner.
In Figure 4(a)–(d) the density contours are shown at time moments t=0:5; 1; 2; 4. Compu-

tations were performed on the rectangular uniform 480×160 grid with the spacings hx= hy=
1=160. Note that in this case and in all further computations the shocks obtained by the
�rst-order scheme are rather thick and they were recognized improper to be presented here.
The results in Figure 4 are the same that in Reference [14]. At time t=0:5 (Figure 4(a))
the bow shock is formed, then extending by t=1 it reaches the top wall and re�ects from
it (Figure 4(b)). In some time, about t=2 (Figure 4(c)), the shock re�ects from the step,
near the top wall the Mach stem emerges and the contact discontinuity emanates from the
triple point. By time t=4 (Figure 4(d)) the shock wave has already re�ected triply, the con-
tact discontinuity has intersected twice the shock. Results obtained on such a re�ned grid we
will consider as a standard to estimate the accuracy of calculations on the moving and adap-
tive grids. Note that if calculating on the rectangular grid without above additional boundary
condition, we shall have irregular re�ection from the step [16].
In the �rst set of computations we have studied possibility to increase the accuracy by using

the technology of moving grids and consisting of cutting the physical domain into subdomains
with boundaries being the shock waves or contact discontinuities. However, in this example
it is easy to capture only the bow shock as a boundary line. Attempt to capture the re�ecting
shocks as the boundary of subdomains runs into serious di�culties since both the boundary
of subdomains and their number are changing during the process.
In Figure 5(a),(b) the 150×60 grid and density contours are shown at time t=4. When

calculating we apply the shock-�tting procedure to capture the bow shock and Mach stem
without using the grid adaptation procedure. An additional boundary condition imposed near
the corner of the step [14] on such a curvilinear grid leads to increasing the errors caused by
the corner in�uence and we do not apply it. Nevertheless, we obtain the re�ection from the
step similar to that obtained on the rectangular grid with applying that boundary condition.
Thus, using the proper grid conforming with the solution, when the grid lines align with the
stream lines near the corner, enables the reduction of those numerical errors. We can estimate
the error comparing the results shown in Figure 5(b) with standard results from Figure 4(d).
It can be seen that the thickness of the re�ected shock wave is about three to four times
larger as for the standard.
In order to increase the accuracy in the next set of computations we have used the grid

adaptation together with the shock �tting procedure.
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Figure 4. Density contours at (a) t=0:5, (b) t=1, (c) t=2, (d) t=4,
on the uniform rectangular 480× 160 grid.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1–22
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Figure 5. Moving quasiuniform 150× 60 grid (a) applied together with the shock-�tting procedure to
the left bow shock and Mach stem at t=4; density contours (b).

First, we have performed computations with adaptation to the vector-function (u; v; p; �)T .
The adapted grid at t=4 and u; v; p; � contours are shown in Figure 6. The adaptation pro-
cedure was switched on at time 3.95, before this the calculations were performed only with
�tting the bow shock. Since time 3.95 every time step includes one additional iteration for
the grid and during it we solve the gas dynamics problem for the entire grid. Thus, the total
number of iterations for the grid at every time step Niter was equal to 2. Adaptation was
performed along the boundaries as well, including the moving bow shock, with the use of a
1D algorithm [12]. The iteration parameter �=0:15, coe�cient of adaptation was de�ned as
follows:

ca=

{
0:2 if x60:6

0:2− 0:05(x − 0:6)=(3− 0:6) if x¿0:6

and for each component of the vector-function ci=0:25ca, coe�cient Dmax =100 in all vari-
ants. We can see that grid lines compression to the shock wave emanating from the triple
point is strong enough meanwhile the contact discontinuity is weakly indicated. Disturbances
from the corner distort strongly the grid cells and we had to decrease ca down to 0.05 in the
vicinity of the point where the shock wave re�ects from the step. Otherwise we would get
distorted cells. Furthermore, we switched o� adaptation (ca=0) in the vicinity of the corner
in all variants since the rarefaction wave a�ects the shape of cells in the same manner.
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Figure 6. Adaptive 150× 60 grid (a) applied together with the shock-�tting procedure
at t=4; velocity components u (b) and v (c), pressure (d) and density (e) contours.

Adaptation to the vector-function (u; v; p; �)T .
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Results of computations with adaptation to scalar functions � and |V | are presented in
Figure 7(a) and (b), correspondingly. Contours of |V | are presented in Figure 7(c). Fragment
of the grid from Figure 7(b) is shown in Figure 7(d). Coe�cient of adaptation ca was de�ned
as above. In the case of adaptation to � the grid does not ‘feel’ the contact discontinuity,
but in the case of adaptation to |V | the grid compression to the contact discontinuity was
obtained. Comparing Figure 6(e) and Figure 7(c) we can see that the reason lies in di�erent
behavior of the � and |V | contours in the vicinity of the contact discontinuity.
We see that computations including adaptation coupled with the shock-�tting procedure

have been quite successful. It can be recommended in various applications where the bow
shocks can be captured as boundary lines.
An easy way to obtain nearly the same resolution is to perform global adaptation without

shock �tting.
In the next calculations with global adaptation the grid has been adapted to the vector-

function (u; v; p; �)T . Figures 8 and 9 present the grids and density contours at the same
time moments as in Figure 4. The main calculation was performed with Niter = 2, Dmax =5
and ca=0:1. In order to increase the accuracy at 0.05 before every time point the adaptive
parameters were changed to:

(1) t=0:5 (see Figure 8(a),(b)) Niter = 10, Dmax =100, ca=0:075,
(2) t=1 (see Figure 8(c),(d)) Niter = 6, Dmax =100

ca=

{
0:075 if x61

0:075 + 0:175(x − 1)=(3− 1) if x¿1

(3) t=2 (see Figure 9(a),(b)) Niter = 4, Dmax =100

ca =



0:05 if x60:8

0:05 + 0:15(x − 0:8)=(1:5− 0:8) if 0:8¡x¡1:5

0:2 if x¿1:5

(4) t=4 (see Figure 9(c),(d)) Niter = 2, Dmax =100

ca=



0:05 if x60:6

0:05 + 0:15(x − 0:8)=(1− 0:6) if 0:6¡x¡1

0:2 if x¿1

For each component of the vector-function ci=0:25ca. The choice of di�erent values of
Niter is caused by the di�erent speed of the �ow evolution.
We were forced to pay particular attention to the subdomain where the grid lines ‘formed’

the triple point, see Figure 9(a),(c), since it is a very sensitive place and large value of ca
can cause the grid lines to overlap. One more way to prevent grid folding in this subdomain
is to decrease temporally the iteration parameter � when the triple point is being formed.
The contours of u; v; p; � at t=4 are presented in Figure 10. As in computations with

shock-�tting (see Figure 7(b)) we expect the grid will condense strongly to the tangential
discontinuity with |V | as an adaptation criterion. Parameters of adaptation in this case were
de�ned as above. The grid, �, |V | contours and fragment of the grid at t=4 are shown

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1–22



16 S. A. IVANENKO AND B. N. AZARENOK

Figure 7. Adaptive 150× 60 grids at t=4 applied together with the shock-�tting
procedure when adapting to � (a) and |V | (b) as a control function; |V | contours (c)

in the second case and fragment of the grid (d).
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Figure 8. Global adaptation. Adaptive 180× 60 grids and density contours at t=0:5 (a,b) and 1 (c,d).
Adaptation to the vector-function (u; v; p; �)T .

in Figure 11. On the whole, due to grid adaptation the shock waves thickness decreases
greatly. In the fragment of the grid, Figure 11(c), we see all the shocks are indicated by
very compressed grid lines. Accuracy of computations increases due to the appearance of the
very narrow stretched cells in the vicinity of the bow shock, Mach stem and re�ected shocks.
Maximal aspect ratio achieves 50. Approximately by this factor the width of smearing of the
shocks is decreased. This can cause the accuracy of numerical solution to be increased by
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Figure 9. Global adaptation. Adaptive 180× 60 grids and density contours at t=2 (a,b) and t=4 (c,d).
Adaptation to the vector-function (u; v; p; �)T .

several times [17]. Presence of distorted cells in the vicinity of the shock wave, emanating
from the triple point, probably in�uences the quality of the solution insigni�cantly. In the
region where the shock re�ects from the step, Figure 11(a), the line of nodes clustering is
a bit distorted due to the mentioned numerical boundary layer and as above we set here
ca=0:05.
Performed computations con�rm the presence of an additional smoothing. When using an

adaptive grid the coordinate lines align along the shock waves, forming the stretched cells
oriented along the shocks. The amplitude of spurious oscillations is decreased by several
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Figure 10. Global adaptation. Velocity components u (a) and v (b), pressure (c) and |V | (d) contours
at t=4. Adaptation to the vector-function (u; v; p; �)T .

factors of 10 in comparison with the results obtained on the rectangular grid, see Figure 4(d)
and Figures 9(d) and 11(b).

8. CONCLUDING REMARKS

Results of computations presented in this paper show that the method of adaptive-harmonic
grid generation can be successfully applied to nonstationary problems of gas dynamics.
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Figure 11. Global adaptation with |V | as an adaptation criterion. Adaptive 180× 60 grid (a), density
(b) and |V | (c) contours at t=4. Fragment of the grid in the vicinity of the triple point (d).

The main conclusion is the following. In nonstationary problems it is necessary to use
special procedures in adaptation algorithm to prevent grid folding. Our experience has shown
that in the case of high compression of grid lines, the property to produce grids free of folding
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is the most important. The present method is based on minimization of the functional with
in�nite barrier on the boundary of the set of grids with all convex cells and this guarantees
unfolded grid generation during computations at every time step.
Another important question discussed in many papers is the choice of adaptation criterion.

Our experience has shown that it is better to start with common criterion, i.e., to perform
adaptation to the vector-function of all dependent variables (u; v; p; �)T . Then we can adjust
coe�cients of adaptation ci separately to achieve better resolution of singularities.
The grid is clustered in such a way that we can obtain quite a satisfactory resolution of

the shocks with not a great number of grid nodes. For the above test the accuracy on the
adaptive grid is higher, due to decreasing the thickness of shocks, than on the rectangular grid
with a greater number of nodes by a factor of 7.1. At the same time in case of adaptation it
is required less run time by a factor of 1.5. Note the method is not quite automatic. Success
of adaptation depends on the coe�cient of adaptation ca to be selected during computations.
As in the case of a uniform grid, here the shock wave is smeared within three cells and the

grid with strong clustering looks like a set of blocks with the boundaries de�ned automatically
as the lines of grid nodes clustering. Inside every ‘block’ the grid is quasiuniform and the
solution is smooth. This approach may be considered as a further development of the moving
block technology presented in the monograph [11], where the �ow domain is divided into
blocks with boundaries being the shock waves or contact discontinuities.
The advantage of the moving adaptive grid technology is that such a ‘cutting’ is performed

automatically. In real-world computations we can obtain such a complex nonstationary con-
�guration of the blocks that even if we would be able to capture their boundaries ‘by hand’,
we will have serious problems in attempting to join those blocks. In complex situations it is
necessary to adjust the parameters of the algorithm to provide both unfolded grid generation
at every time step and smooth variation of the grid control parameters. For example, at Mach
stem emerging in the vicinity of the triple point strongly distorted cells appear up to their
degeneration. Hence, in this subdomain we shall not specify too large a value of ca.
Formally moving adaptive-harmonic grid generation method can be extended to the 3D case

[2], however, it is necessary to perform additional theoretical and experimental investigations
with the purpose of creating algorithms with an immanent guarantee of producing grids free
of folding.

REFERENCES

1. Ivanenko SA. Adaptive-harmonic grid generation and its application for numerical solution of the problems with
boundary and interior layers. Computational Mathematics and Mathematical Physics 1995; 35(10):1203–1220.

2. Ivanenko SA. Harmonic mappings, Ch. 8. Handbook of Grid Generation. CRC Press: Boca Raton, FL, 1999.
3. Ivanenko SA, Muratova GV. Adaptive grid shallow water modeling. Applied Numerical Mathematics 2000;
32(4):447–482.

4. Thompson JF, Soni BK, Weatherill NP (eds). Handbook of Grid Generation. CRC Press: Boca Raton, FL,
1999.

5. McRay DS, R. La�in KR. Dynamic grid adaptation and grid quality, Ch. 34. Handbook of Grid Generation.
CRC Press: Boca Raton, FL, 1999.

6. Thompson JF. A survey of dynamically-adaptive grids in the numerical solution of partial di�erential equations.
Applied Numerical Mathematics 1985; 1:3–27.

7. Ingram CL, McRay DS. Extension of a dynamic solution-adaptive grid algorithm and solver to general structured
multi-block con�gurations, AIAA 96-0294, AIAA 34th Aerospace Science Meeting, Reno: NV, Jan. 1996.

8. Zegeling PA. Moving grid techniques, Ch. 37. Handbook of Grid Generation. CRC Press: Boca Raton, FL,
1999.

9. Liu F, Ji S, Liao G. An adaptive grid method and its application to steady Euler �ow calculations. SIAM
Journal of Scienti�c Computing 1998; 20:811–825.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1–22



22 S. A. IVANENKO AND B. N. AZARENOK

10. Azarenok BN. Realization of a second-order Godunov’s scheme. Computer Methods in Applied Mechanics and
Engineering 2000; 189(3):1031–1052.

11. Godunov SK, Zabrodin AV, Ivanov MY, Kraiko AN, Prokopov GP. Numerical Solution of Multi-dimensional
Problems in Gas Dynamics. Nauka Press: Moscow, 1976.

12. Charakhch’yan AA, Ivanenko SA. A variational form of the Winslow grid generator. Journal of Computational
Physics 1997; 136:385–398.

13. Liseikin VD. Grid Generation Methods. Springer-Verlag: New York, 1999.
14. Colella P, Woodward PR. The numerical simulation of two-dimensional �uid �ow with strong shocks. Journal

of Computational Physics 1984; 54:115–173.
15. Kim C, Jameson A. A robust and accurate LED–BGK solver on unstructured adaptive meshes. Journal of

Computational Physics 1998; 143:598–627.
16. Woodward PR, Colella P. Lectures Notes in Physics No. 141, Springer-Verlag: New York=Berlin, 1981: 434.
17. Azarenok BN. Adaptive moving grids in supersonic �ow simulation. In Numerical Grid Generation in

Computational Field Simulations, Proceedings of the 7th International Conference, September 25–28, 2000,
Whistler, British Columbia. Soni BK, Haeuser J, Thompson JF, Eiseman P (eds). 2000: 629–638.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:1–22


